146 research outputs found

    Hyperuniformity with no fine tuning in sheared sedimenting suspensions

    Get PDF
    Particle suspensions, present in many natural and industrial settings, typically contain aggregates or other microstructures that can complicate macroscopic flow behaviors and damage processing equipment. Recent work found that applying uniform periodic shear near a critical transition can reduce fluctuations in the particle concentration across all length scales, leading to a hyperuniform state. However, this strategy for homogenization requires fine tuning of the strain amplitude. Here we show that in a model of sedimenting particles under periodic shear, there is a well-defined regime at low sedimentation speed where hyperuniform scaling automatically occurs. Our simulations and theoretical arguments show that the homogenization extends up to a finite lengthscale that diverges as the sedimentation speed approaches zero.Comment: 11 pages, 6 figure

    Viscous to Inertial Crossover in Liquid Drop Coalescence

    Full text link
    Using an electrical method and high-speed imaging we probe drop coalescence down to 10 ns after the drops touch. By varying the liquid viscosity over two decades, we conclude that at sufficiently low approach velocity where deformation is not present, the drops coalesce with an unexpectedly late crossover time between a regime dominated by viscous and one dominated by inertial effects. We argue that the late crossover, not accounted for in the theory, can be explained by an appropriate choice of length-scales present in the flow geometry.Comment: 4 pages, 4 figure

    Multiple transient memories in sheared suspensions: robustness, structure, and routes to plasticity

    Get PDF
    Multiple transient memories, originally discovered in charge-density-wave conductors, are a remarkable and initially counterintuitive example of how a system can store information about its driving. In this class of memories, a system can learn multiple driving inputs, nearly all of which are eventually forgotten despite their continual input. If sufficient noise is present, the system regains plasticity so that it can continue to learn new memories indefinitely. Recently, Keim & Nagel showed how multiple transient memories could be generalized to a generic driven disordered system with noise, giving as an example simulations of a simple model of a sheared non-Brownian suspension. Here, we further explore simulation models of suspensions under cyclic shear, focussing on three main themes: robustness, structure, and overdriving. We show that multiple transient memories are a robust feature independent of many details of the model. The steady-state spatial distribution of the particles is sensitive to the driving algorithm; nonetheless, the memory formation is independent of such a change in particle correlations. Finally, we demonstrate that overdriving provides another means for controlling memory formation and retention

    Multiple transient memories in experiments on sheared non-Brownian suspensions

    Get PDF
    A system with multiple transient memories can remember a set of inputs but subsequently forgets almost all of them, even as they are continually applied. If noise is added, the system can store all memories indefinitely. The phenomenon has recently been predicted for cyclically sheared non-Brownian suspensions. Here we present experiments on such suspensions, finding behavior consistent with multiple transient memories and showing how memories can be stabilized by noise.Comment: 5 pages, 4 figure

    Memory formation in matter

    Get PDF
    Memory formation in matter is a theme of broad intellectual relevance; it sits at the interdisciplinary crossroads of physics, biology, chemistry, and computer science. Memory connotes the ability to encode, access, and erase signatures of past history in the state of a system. Once the system has completely relaxed to thermal equilibrium, it is no longer able to recall aspects of its evolution. Memory of initial conditions or previous training protocols will be lost. Thus many forms of memory are intrinsically tied to far-from-equilibrium behavior and to transient response to a perturbation. This general behavior arises in diverse contexts in condensed matter physics and materials: phase change memory, shape memory, echoes, memory effects in glasses, return-point memory in disordered magnets, as well as related contexts in computer science. Yet, as opposed to the situation in biology, there is currently no common categorization and description of the memory behavior that appears to be prevalent throughout condensed-matter systems. Here we focus on material memories. We will describe the basic phenomenology of a few of the known behaviors that can be understood as constituting a memory. We hope that this will be a guide towards developing the unifying conceptual underpinnings for a broad understanding of memory effects that appear in materials

    Exact solutions for the wrinkle patterns of confined elastic shells

    Full text link
    Thin elastic membranes form complex wrinkle patterns when put on substrates of different shapes. Such patterns continue to receive attention across science and engineering. This is due, in part, to the promise of lithography-free micropatterning, but also to the observation that similar patterns arise in biological systems from growth. The challenge is to explain the patterns in any given setup, even when they fail to be robust. Building on the theoretical foundation of [Tobasco, to appear in Arch. Ration. Mech. Anal., arXiv:1906.02153], we derive a complete and simple rule set for wrinkles in the model system of a curved shell on a liquid bath. Our rules apply to shells whose initial Gaussian curvatures are of one sign, such as cutouts of saddles and spheres. They predict the surprising coexistence of orderly wrinkles alongside disordered regions where the response appears stochastic, which we confirm in experiment and simulation. They also unveil the role of the shell's medial axis, a distinguished locus of points that we show is a basic driver in pattern selection. Finally, they explain how the sign of the shell's initial curvature dictates the presence or lack of disorder. Armed with our simple rules, and the methodology underlying them, one can anticipate the creation of designer wrinkle patterns.Comment: Extended text including Supplementary Information. Heavily revised to focus the exposition and incorporate new results; title chang

    Crumples as a generic stress-focusing instability in confined sheets

    Full text link
    Thin elastic solids are easily deformed into a myriad of three-dimensional shapes, which may contain sharp localized structures as in a crumpled candy wrapper, or have smooth and diffuse features like the undulating edge of a flower. Anticipating and controlling these morphologies is crucial to a variety of applications involving textiles, synthetic skins, and inflatable structures. Here we show that a "wrinkle-to-crumple" transition, previously observed in specific settings, is a ubiquitous response for confined sheets. This unified picture is borne out of a suite of model experiments on polymer films confined to liquid interfaces with spherical, hyperbolic, and cylindrical geometries, which are complemented by experiments on macroscopic membranes inflated with gas. We use measurements across this wide range of geometries, boundary conditions, and lengthscales to quantify several robust morphological features of the crumpled phase, and we build an empirical phase diagram for crumple formation that disentangles the competing effects of curvature and compression. Our results suggest that crumples are a generic microstructure that emerge at large curvatures due to a competition of elastic and substrate energies.Comment: 12 pages, 7 figure

    Coalescence of bubbles and drops in an outer fluid

    Get PDF
    When two liquid drops touch, a microscopic connecting liquid bridge forms and rapidly grows as the two drops merge into one. Whereas coalescence has been thoroughly studied when drops coalesce in vacuum or air, many important situations involve coalescence in a dense surrounding fluid, such as oil coalescence in brine. Here we study the merging of gas bubbles and liquid drops in an external fluid. Our data indicate that the flows occur over much larger length scales in the outer fluid than inside the drops themselves. Thus, we find that the asymptotic early regime is always dominated by the viscosity of the drops, independent of the external fluid. A phase diagram showing the crossovers into the different possible late-time dynamics identifies a dimensionless number that signifies when the external viscosity can be important
    corecore